上篇中说到,Linux kernel中大部分设备可以归结为平台设备,因此大部分的驱动是平台驱动。
I2C控制器挂载在platform Bus上,因此我们在linux kernel中常说的I2C driver,都是指I2C controller driver,都是以platform driver的形式存在,当然,对应的控制器是platform device。
小鱼学编程,公众号:嵌入式ABC与此同时,kernel抽象出I2C bus(/sys/bus/i2c),用于挂载和I2C controller通过I2C总线连接的各个I2C slave device。
本篇学习i2c驱动架构。并理解和回答如下问题
I2C Controller Driver是如何基于platform driver展开的
为什么需要I2C Adapter, I2C Adapter提供了什么?
I2C Slave Driver是如何实现的
I2C 硬件总线拓扑
设想一个智能家居中控屏带有LCD大屏和电容触摸屏。其电容触摸屏,加速度传感器(横竖屏)等有可能即是i2C接口。
上文中,我们将SOC外设抽象为platform bus上的platform 设备。处理器i2c controller作为master,i2c总线上的触摸屏和传感器为从设备(i2C slaves)。则进一步抽象为下图
Note:linux不支持I2C外设作为i2c slave设备。但是绝大数的跑linux系统的处理器应该都是作为主设备的。
linux kernel I2C framework
上图的硬件拓扑在i2c framework中又是如何抽象的呢?其中
/sys/bus/i2c/devices/<0>-<1>/
where <0> is the bus the chip is connected to (e. g. i2c-0)
and <1> the chip address
例如:pi@raspberrypi:/sys/bus/platform/devices/3f804000.i2c $ ls
driver driver_override i2c-1 modalias of_node power subsystem uevent
i2c Framework 框架图
代码位于路径drivers\i2c\I2C core使用I2C adapter和I2C algorithm两个子模块抽象I2C controller的功能,使用I2C client和I2C driver抽象I2C slave device的功能(对应设备模型中的device和device driver)。另外,基于I2C协议,通过smbus模块实现SMBus(System Management Bus,系统管理总线)的功能。
I2C busses是各个I2C controller drivers的集合,位于drivers/i2c/busses/目录下,驱动工程师常说的“I2C driver”就是指它们。比如树莓派的i2C驱动:busses\i2c-bcm2835.c
I2C Controller Driver
上节中提到了,I2C busses是各个I2C controller drivers的集合,位于drivers/i2c/busses/目录下,驱动工程师常说的“I2C driver”就是指它们。比如树莓派的i2C驱动:busses\i2c-bcm2835.c。注意这里的driver 和i2C core 框图里面的driver的区别。还以busses\i2c-bcm2835.c展开,如下图,这是一个platform_driver.
参照上文中的platform驱动开发框架,
模块的入口和出口
platform driver三要素
struct platform_driver变量
probe/remove函数
用于和device tree匹配的match table
其中“模块的入口和出口”, 由宏 module_platform_driver(bcm2835_i2c_driver);
定义。
三要素中的“match table"函数
//driver中match table
static const struct of_device_id bcm2835_i2c_of_match[] = {
{ .compatible = "brcm,bcm2835-i2c" },
{},
};
//dts 中 i2c0 controller资源
i2c0: i2c@20205000 {
compatible = "brcm,bcm2835-i2c";
reg = <0x7e205000 0x1000>;
interrupts = <2 21>;
clocks = <&clk_i2c>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
三要素中的“probe"函数
static int bcm2835_i2c_probe(struct platform_device *pdev)
{
struct bcm2835_i2c_dev *i2c_dev;
struct resource *mem, *irq;
u32 bus_clk_rate, divider;
int ret;
struct i2c_adapter *adap;
i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
if (!i2c_dev)
return -ENOMEM;
platform_set_drvdata(pdev, i2c_dev);
i2c_dev->dev = &pdev->dev;
init_completion(&i2c_dev->completion);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c_dev->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(i2c_dev->regs))
return PTR_ERR(i2c_dev->regs);
i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c_dev->clk)) {
dev_err(&pdev->dev, "Could not get clock\n");
return PTR_ERR(i2c_dev->clk);
}
ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency",
&bus_clk_rate);
if (ret < 0) {
dev_warn(&pdev->dev,
"Could not read clock-frequency property\n");
bus_clk_rate = 100000;
}
divider = DIV_ROUND_UP(clk_get_rate(i2c_dev->clk), bus_clk_rate);
/*
* Per the datasheet, the register is always interpreted as an even
* number, by rounding down. In other words, the LSB is ignored. So,
* if the LSB is set, increment the divider to avoid any issue.
*/
if (divider & 1)
divider++;
bcm2835_i2c_writel(i2c_dev, BCM2835_I2C_DIV, divider);
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq) {
dev_err(&pdev->dev, "No IRQ resource\n");
return -ENODEV;
}
i2c_dev->irq = irq->start;
ret = request_irq(i2c_dev->irq, bcm2835_i2c_isr, IRQF_SHARED,
dev_name(&pdev->dev), i2c_dev);
if (ret) {
dev_err(&pdev->dev, "Could not request IRQ\n");
return -ENODEV;
}
adap = &i2c_dev->adapter;
i2c_set_adapdata(adap, i2c_dev);
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_DEPRECATED;
strlcpy(adap->name, "bcm2835 I2C adapter", sizeof(adap->name));
adap->algo = &bcm2835_i2c_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
bcm2835_i2c_writel(i2c_dev, BCM2835_I2C_C, 0);
ret = i2c_add_adapter(adap);
if (ret)
free_irq(i2c_dev->irq, i2c_dev);
return ret;
}
我们发现其实和上文中的serial driver干了类似的事情
回忆一下上文中的serial driver:
定义并注册uart driver
注册uart port
定义并实现uart ops
这里的i2C driver(注意是图中的i2c buses)应该也是完成的类似的实现,只是不同于serial driver,这里又封装了个"adapter". 在上面的probe函数中,最终是添加了一个"adapter"。
adap = &i2c_dev->adapter;
i2c_set_adapdata(adap, i2c_dev);
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_DEPRECATED;
strlcpy(adap->name, "bcm2835 I2C adapter", sizeof(adap->name));
adap->algo = &bcm2835_i2c_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
bcm2835_i2c_writel(i2c_dev, BCM2835_I2C_C, 0);
ret = i2c_add_adapter(adap);
这个adapter最终实现了底层的驱动
static const struct i2c_algorithm bcm2835_i2c_algo = {
.master_xfer = bcm2835_i2c_xfer,
.functionality = bcm2835_i2c_func,
};
//probe函数中:
//注册收发中断
ret = request_irq(i2c_dev->irq, bcm2835_i2c_isr, IRQF_SHARED,
dev_name(&pdev->dev), i2c_dev);
//给adapter的algo赋值
adap->algo = &bcm2835_i2c_algo;
i2c core
上节中提到,I2C core使用I2C adapter和I2C algorithm两个子模块抽象I2C controller的功能,使用I2C client和I2C driver抽象I2C slave device的功能(对应设备模型中的device和device driver)。这里的driver是i2c设备driver。/*
* i2c_adapter is the structure used to identify a physical i2c bus along
* with the access algorithms necessary to access it.
*/
struct i2c_adapter {
struct module *owner;
unsigned int class; /* classes to allow probing for */
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
void *algo_data;
/* data fields that are valid for all devices */
struct rt_mutex bus_lock;
int timeout; /* in jiffies */
int retries;
struct device dev; /* the adapter device */
int nr;
char name[48];
struct completion dev_released;
struct mutex userspace_clients_lock;
struct list_head userspace_clients;
struct i2c_bus_recovery_info *bus_recovery_info;
const struct i2c_adapter_quirks *quirks;
};
下文再接着看如何基于kernel提供的i2c framework,在内核空间或者用户空间开发i2c 设备驱动(device driver)