嵌入式系统与单片机|技术阅读
登录|注册

您现在的位置是:嵌入式系统与单片机 > 技术阅读 > STEP BY STEP设计一个USB调试助手之十:异步传输+FIFO实现解耦

STEP BY STEP设计一个USB调试助手之十:异步传输+FIFO实现解耦

一.前言

前面我们实现了异步传输的demo,能够进行数据收发测试。但是还不够,现在的实现不方便应用层使用。对于应用层来说只需要启动,关闭,读,写这几个接口,无需关心USB相关的逻辑。使用FIFO来实现应用层和底层驱动的解耦是一个不错的方式,我们前面也有系列文章分享了FIFO的实现见:https://mp.weixin.qq.com/s/MvL9eDesyuxD60fnbl1nag

这一篇我们就在上一篇基础上增加FIFO,实现底层和应用的解耦,最后将我们之前设计的GUI和现在的框架合并起来,实现更加高效好用的最终版本。

二.程序框架

我们在上一篇框图基础上修改

提供给应用层仅4个接口

usbdev_run

usbdev_stop 控制设备启动和停止,即控制数据收发线程的状态,现在收发线程默认启动就按照默认参数打开设备接口,进行端点的收发,通过这两个接口控制数据收发的启动和停止。今后还可以继续优化,数据收发线程维护一个状态机,划分为更多更细的状态,可以进行更多更细致的控制,比如打开某个接口,控制某个端点的收发,端点收发的启动停止,传输次数等。

而应用层往USB发送数据只要调用usbdev_write接口往TX_FIFO写数据即可,数据收发线程自动根据当前状态从TX_FIFO读出数据进行发送。

接收和上述相反,数据收发线程根据状态进行USB接收,接收到数据后在事件回调中将数据写入RX_FIFO中,应用层只需要调用usbdev_readRX_FIFO即可。

以上就实现了应用层和底层的接口,接口很简单,应用非常方便。

三.实现

新增usbdev_fifo.c/usbdev_fifo.h实现以上txrxfifo实例。

fifo.c/fifo.h是完全可移植的fifo实现代码,参考之前的文章。

usbd_cfg.h定义一些参数

#ifndef USBDEV_CFG_H#define USBDEV_CFG_H
#if defined(__cplusplus)extern "C" {#endif
#define TX_FIFO_NUM 2#define RX_FIFO_NUM 2#define USBDEV_TX_FIFO_MAX_SIZE (1024*1024ul)#define USBDEV_RX_FIFO_MAX_SIZE (1024*1024ul)
#if defined(__cplusplus)}#endif
#endif // USBDEV_CFG_H

usbdev.c

#include <stdio.h>#include <pthread.h>#include <semaphore.h>#include "libusb.h"#include "usbdev_fifo.h"#include "usbdev.h"
#define TRANSFER_SIZE 64 /* 一次传输的大小 */#define VID 0x1999#define PID 0x0101#define USB_ITF_ID 0#define USB_IN_EP 0x81#define USB_OUT_EP 0x01
static void* usb_event_thread(void *arg); /* USB事件线程处理函数 */static void* usb_handle_thread(void *arg); /* USB业务线程处理函数 */pthread_t s_usb_event_thread; /* USB事件处理线程句柄 */pthread_t s_usb_handle_thread; /* USB业务处理线程句柄 */
libusb_device_handle *s_opened_handle = NULL; /* USB打开的设备句柄 */
struct libusb_transfer* s_tx_transfer = NULL; /* 发送传输 */struct libusb_transfer* s_rx_transfer = NULL; /* 接收传输 */static uint8_t s_tx_buffer[TRANSFER_SIZE]; /* 发送数据 */static uint8_t s_rx_buffer[TRANSFER_SIZE]; /* 接收数据 */static int s_tx_busy = 0; /* 发送忙标志 */static int s_rx_busy = 0; /* 接收忙标志 */sem_t s_sem;
int16_t vid = VID;int16_t pid = PID;int16_t itf = USB_ITF_ID;int16_t in_ep = USB_IN_EP;int16_t out_ep = USB_OUT_EP;
static usbdev_state_e s_usbdev_state = USBDEV_STATE_INITING;
#define MAX_TX_LEN (sizeof(s_tx_buffer)*100)
int usbdev_run(void){ int r; s_usbdev_state = USBDEV_STATE_INITING; usbdev_fifo_init(); r = libusb_init_context(/*ctx=*/NULL, /*options=*/NULL, /*num_options=*/0); if (r < 0) { //printf("failed to init context %d\r\n",r); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return r; }
s_opened_handle = libusb_open_device_with_vid_pid(NULL, vid, pid); if (s_opened_handle == NULL) { //printf("open dev err\r\n"); libusb_exit(NULL); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return r; }
r = libusb_claim_interface(s_opened_handle,itf); if (r < 0) { //printf("failed to claim interface %d\r\n",r); libusb_close(s_opened_handle); libusb_exit(NULL); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return r; }
sem_init(&s_sem, 0, 0);
/* 创建usb事件处理线程 */ r = pthread_create(&s_usb_event_thread,0,usb_event_thread,0); if (r != 0) { //printf("failed to create usb event thread:%d\r\n",r); libusb_release_interface(s_opened_handle,itf); libusb_close(s_opened_handle); libusb_exit(NULL); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return r; }
/* 创建usb业务处理线程 */ r = pthread_create(&s_usb_handle_thread,0,usb_handle_thread,0); if (r != 0) { //printf("failed to create usb handle thread:%d\r\n",r); libusb_release_interface(s_opened_handle,itf); libusb_close(s_opened_handle); libusb_exit(NULL); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return r; }
s_usbdev_state = USBDEV_STATE_RUNING; /* 等待线程结束 */ void *res; pthread_join(s_usb_event_thread,&res); pthread_join(s_usb_handle_thread,&res); sem_destroy(&s_sem);
libusb_release_interface(s_opened_handle,USB_ITF_ID); libusb_close(s_opened_handle); libusb_exit(NULL); usbdev_fifo_deinit(); s_usbdev_state = USBDEV_STATE_STOPED; return 0;}
void tx_cb(struct libusb_transfer *transfer){ if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { /* 成功 */ //printf("tx_cb ok\r\n"); } else { /* 失败 */ //printf("tx_cb err %d\r\n",transfer->status); //libusb_submit_transfer(transfer); } libusb_free_transfer(transfer); s_tx_busy = 0;}
void rx_cb(struct libusb_transfer *transfer){ if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { /* 成功 */ //printf("rx_cb ok\r\n"); } else { /* 失败 */ //printf("rx_cb err %d\r\n",transfer->status); //libusb_submit_transfer(transfer); }
if(transfer->actual_length > 0) { //printf("rx len %d\r\n",transfer->actual_length); usbdev_rx_fifo_put(0, s_rx_buffer, transfer->actual_length); } libusb_free_transfer(transfer);
s_rx_busy = 0;}
static void* usb_event_thread(void *arg){ while(1) { if(0 == sem_trywait(&s_sem)) { return 0; } libusb_handle_events(0); const struct timespec interval= { .tv_nsec = 1000000, .tv_sec = 0, }; pthread_delay_np(&interval); } return 0;}
static void* usb_handle_thread(void *arg){ while(1) { int rc;
/* 发送处理 */ uint32_t len; if(s_tx_busy == 0) { len = usbdev_tx_fifo_get(0, s_tx_buffer, sizeof(s_tx_buffer)); if(len > 0) { s_tx_busy = 1; s_tx_transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(s_tx_transfer,s_opened_handle,out_ep,s_tx_buffer,len,&tx_cb,0,100); rc = libusb_submit_transfer(s_tx_transfer); if(rc < 0) { s_tx_busy = 0; libusb_free_transfer(s_tx_transfer); s_tx_transfer = 0; } } }
/* 接收处理 */ if(s_rx_busy == 0) { s_rx_busy = 1; s_rx_transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(s_rx_transfer,s_opened_handle,in_ep,s_rx_buffer,sizeof(s_rx_buffer),&rx_cb,0,100); rc = libusb_submit_transfer(s_rx_transfer); if(rc < 0) { s_rx_busy = 0; libusb_free_transfer(s_rx_transfer); s_rx_transfer = 0; } }
const struct timespec interval= { .tv_nsec = 1000000, .tv_sec = 0, }; pthread_delay_np(&interval); }
return 0;}
int usbdev_stop(void){ sem_post(&s_sem);}
int usbdev_write(int id, uint8_t* buffer, uint32_t len){ return usbdev_tx_fifo_put(id, buffer, len);}
int usbdev_read(int id, uint8_t* buffer, uint32_t len){ return usbdev_rx_fifo_get(id, buffer, len);}
usbdev_state_e usbdev_state(void){ return s_usbdev_state;}

ubsdev.h

#ifndef USBDEV_H#define USBDEV_H
#if defined(__cplusplus)extern "C" {#endif
#include <stdint.h>
typedef enum{ USBDEV_STATE_INITING = 0, USBDEV_STATE_RUNING = 1, USBDEV_STATE_STOPED = 2,} usbdev_state_e;
int usbdev_run(void);int usbdev_write(int id, uint8_t* buffer, uint32_t len);int usbdev_read(int id, uint8_t* buffer, uint32_t len);int usbdev_stop(void);usbdev_state_e usbdev_state(void);
#if defined(__cplusplus)}#endif
#endif // USBDEV_H

fifo.c

#include <string.h>#include "fifo.h"
/** * in为写入索引 0~(buffer_len-1)。 * out为读出索引 0~(buffer_len-1)。 * in == out时可能是满,也可能是空,可以通过len有效数据长度来确认。 * 写数据in增加,直到追赶到out则满。 * 读数据则out增加,直到追赶到in则空。 * in大于out时则[out,in)区间是有效数据。 * in小于out时则[out,buffer_len)和[0,in)区间是有效数据。 *********************************************************** * 0 buffer_len-1 buffer_len * (1)开始 in和out都是0 * | | * in(0) * out(0) * len = 0 * (2)写入n字节数据 in变为n和out还是0 对应in大于out的情况 * | | * out(0)————————————>in(n) | * len = n * (3)读出m字节数据(m<n) in还是n和out变为m 对应in大于out的情况 * | | * out(m)————>in(n) * len = n-m * (4)继续写入数据,绕回到开头,对应in小于out的情况 * | | * out(m)————————————————————————————————> * ——>in(k) * len = k + buffer_len-m */uint32_t fifo_in(fifo_st* dev, uint8_t* buffer, uint32_t len){ uint32_t space = 0; /* 用于记录空闲空间大小 */#if FIFO_PARAM_CHECK /* 参数检查 */ if((dev == 0) || (buffer == 0) || (len == 0)) { return 0; } if(dev->buffer == 0) { return 0; }#endif
#if FIFO_SUPPORT_LOCK if(dev->mutex_lock != 0) { dev->mutex_lock(dev->mutex); }#endif /* 限制len的最大长度为buffer大小 */ if(len > dev->buffer_len) { len = dev->buffer_len; }
/* 计算空闲空间大小 * 正常dev->len不应该大于dev->buffer_len */ if(dev->buffer_len >= dev->len) { space = dev->buffer_len - dev->len; } else { /* 这里不应该出现, 出现则是异常 */ dev->len = 0; space = dev->buffer_len; }
/* 计算待写入大小, 如果len大于剩余空间则只写入剩余空间大小 */ len = (len >= space) ? space : len; if(len == 0) {#if FIFO_SUPPORT_LOCK if(dev->mutex_unlock != 0) { dev->mutex_unlock(dev->mutex); }#endif return 0; /* 这里有可能无剩余空间,直接返回 */ }
/* 计算len的长度是否需要有绕回,需要分次写入 */ space = dev->buffer_len - dev->in; /* 当前写入位置in到缓存末尾剩余可写入空间 */ if(space >= len) { /* 当前写入位置in到缓存末尾足够一次写入 */ memcpy(dev->buffer+dev->in,buffer,len); } else { /* 当前写入位置in到缓存末尾不够,还需要绕回到前面写 */ memcpy(dev->buffer+dev->in,buffer,space); /* 先写入tail部分 */ memcpy(dev->buffer,buffer+space,len-space); /* 再写入绕回头部分 */ } /* 更新写入索引和有效数据长度 */ dev->in += len; if(dev->in >= dev->buffer_len) { dev->in -= dev->buffer_len; /* 判断加减法 替代 dev->in %= dev->buffer->len */ } dev->len += len; /* dev->len最大dev->buffer->len,无需%= dev->buffer->len */
#if FIFO_SUPPORT_LOCK if(dev->mutex_unlock != 0) { dev->mutex_unlock(dev->mutex); }#endif return len;}
uint32_t fifo_out(fifo_st* dev, uint8_t* buffer, uint32_t len){ uint32_t space = 0;#if FIFO_PARAM_CHECK /* 参数检查 */ if((dev == 0) || (buffer == 0) || (len == 0)) { return 0; } if(dev->buffer == 0) { return 0; }#endif
#if FIFO_SUPPORT_LOCK if(dev->mutex_lock != 0) { dev->mutex_lock(dev->mutex); }#endif /* 判断是否有数据 */ if(dev->len == 0) {#if FIFO_SUPPORT_LOCK if(dev->mutex_unlock != 0) { dev->mutex_unlock(dev->mutex); }#endif return 0; }
/* 可读出数据量取需要的和有的之间的小值 */ len = (dev->len) > len ? len : dev->len;
/* 计算len的长度是否需要有绕回,需要分次读出 */ space = dev->buffer_len - dev->out; /* 当前读出位置out到缓存末尾剩余可读出空间 */ if(space >= len) { /* 当前读出位置out到缓存末尾足够一次读出 */ memcpy(buffer,dev->buffer+dev->out,len); } else { /* 当前读出位置out到缓存末尾不够,还需要绕回到前面读 */ memcpy(buffer,dev->buffer+dev->out,space); /* 先读出tail部分 */ memcpy(buffer+space,dev->buffer,len-space); /* 再读出绕回头部分 */ } /* 更新读出索引和有效数据长度 */ dev->out += len; if(dev->out >= dev->buffer_len) { dev->out -= dev->buffer_len; /* 判断加减法 替代 dev->out %= dev->buffer->len */ } dev->len -= len; /* 这里dev->len 不可能小于len,不会溢出 */#if FIFO_SUPPORT_LOCK if(dev->mutex_unlock != 0) { dev->mutex_unlock(dev->mutex); }#endif return len;}
uint32_t fifo_get_len(fifo_st* dev){ uint32_t len;#if FIFO_PARAM_CHECK /* 参数检查 */ if(dev == 0) { return -1; }#endif
#if FIFO_SUPPORT_LOCK if(dev->mutex_lock != 0) { dev->mutex_lock(dev->mutex); }#endif
len = dev->len;
#if FIFO_SUPPORT_LOCK if(dev->mutex_unlock != 0) { dev->mutex_unlock(dev->mutex); }#endif
return len;}
int fifo_init(fifo_st* dev){#if FIFO_PARAM_CHECK /* 参数检查 */ if(dev == 0) { return -1; }#endif
#if FIFO_SUPPORT_LOCK if(dev->mutex_init != 0) { dev->mutex_init(dev->mutex); }#endif return 0;}
int fifo_deinit(fifo_st* dev){#if FIFO_PARAM_CHECK /* 参数检查 */ if(dev == 0) { return -1; }#endif
#if FIFO_SUPPORT_LOCK if(dev->mutex_destroy != 0) { dev->mutex_destroy(dev->mutex); }#endif return 0;}

fifo.h



#ifndef FIFO_H#define FIFO_H
#ifdef __cplusplusextern "C" {#endif #include <stdint.h>
#define FIFO_PARAM_CHECK 0#define FIFO_SUPPORT_LOCK 1
/** * \struct fifo_st * FIFO缓冲区结构. */typedef struct { uint32_t in; /**< 写入索引 */ uint32_t out; /**< 读出索引 */ uint32_t len; /**< 有效数据长度 */ uint32_t buffer_len; /**< 有效长度 */ uint8_t* buffer; /**< 缓存,用户分配 */#if FIFO_SUPPORT_LOCK /* 以下用于临界段管理 */ void* mutex; /**< 互斥量 */ void (*mutex_init)(void* mutex); /**< 互斥量初始化 */ void (*mutex_destroy)(void* mutex); /**< 删除互斥量 */ void (*mutex_lock)(void* mutex); /**< 获取互斥量 */ void (*mutex_unlock)(void* mutex); /**< 释放互斥量 */#endif} fifo_st;
/** * \fn fifo_in * 往fifo里写数据 * \param[in] dev \ref fifo_st * \param[in] buffer 待写入的数据 * \param[in] len 待写入的长度 * \retval 返回实际写入的数据量 */uint32_t fifo_in(fifo_st* dev, uint8_t* buffer, uint32_t len);
/** * \fn fifo_get_len * 获取fifo中有效数据长度 * \param[in] dev \ref fifo_st * \return uint32_t 数据长度 */uint32_t fifo_get_len(fifo_st* dev);
/** * \fn fifo_out * 从fifo读出数据 * \param[in] dev \ref fifo_st * \param[in] buffer 存读出的数据 * \param[in] len 需要读出的数据长度 * \retval 返回实际读出的数据量 */uint32_t fifo_out(fifo_st* dev, uint8_t* buffer, uint32_t len);
/** * \fn fifo_init * 初始化fifo * \param[in] dev \ref fifo_st * \retval 0 成功 * \retval 其他值失败 */int fifo_init(fifo_st* dev);
/** * \fn fifo_deinit * 解除初始化fifo * \param[in] dev \ref fifo_st * \retval 0 成功 * \retval 其他值失败 */int fifo_deinit(fifo_st* dev);
#ifdef __cplusplus}#endif
#endif

usbdev_fifo.c

#include <stdio.h>#include <windows.h>#include <process.h>#include "usbdev_cfg.h"#include "fifo.h"#include "usbdev_fifo.h"
typedef CRITICAL_SECTION fifo_mutex_t;
static fifo_mutex_t s_fifo_tx_mutex[TX_FIFO_NUM];static fifo_mutex_t s_fifo_rx_mutex[RX_FIFO_NUM];
static inline void fifo_mutex_init(fifo_mutex_t *mutex){ InitializeCriticalSection(mutex);}
static inline void fifo_mutex_lock(fifo_mutex_t *mutex){ EnterCriticalSection(mutex);}
static inline void fifo_mutex_unlock(fifo_mutex_t *mutex){ LeaveCriticalSection(mutex);}
static inline void fifo_mutex_destroy(fifo_mutex_t *mutex){ DeleteCriticalSection(mutex);}
static fifo_st s_tx_fifo[TX_FIFO_NUM] ={ { .buffer = 0, .buffer_len = USBDEV_TX_FIFO_MAX_SIZE, .in = 0, .len = 0, .out = 0, .mutex = &s_fifo_tx_mutex, .mutex_init = fifo_mutex_init, .mutex_destroy = fifo_mutex_destroy, .mutex_lock = fifo_mutex_lock, .mutex_unlock = fifo_mutex_unlock, }, { .buffer = 0, .buffer_len = USBDEV_TX_FIFO_MAX_SIZE, .in = 0, .len = 0, .out = 0, .mutex = &s_fifo_tx_mutex, .mutex_init = fifo_mutex_init, .mutex_destroy = fifo_mutex_destroy, .mutex_lock = fifo_mutex_lock, .mutex_unlock = fifo_mutex_unlock, }};
static fifo_st s_rx_fifo[RX_FIFO_NUM] ={ { .buffer = 0, .buffer_len = USBDEV_RX_FIFO_MAX_SIZE, .in = 0, .len = 0, .out = 0, .mutex = &s_fifo_rx_mutex, .mutex_init = fifo_mutex_init, .mutex_destroy = fifo_mutex_destroy, .mutex_lock = fifo_mutex_lock, .mutex_unlock = fifo_mutex_unlock, }, { .buffer = 0, .buffer_len = USBDEV_RX_FIFO_MAX_SIZE, .in = 0, .len = 0, .out = 0, .mutex = &s_fifo_rx_mutex, .mutex_init = fifo_mutex_init, .mutex_destroy = fifo_mutex_destroy, .mutex_lock = fifo_mutex_lock, .mutex_unlock = fifo_mutex_unlock, }};
void usbdev_fifo_init(void){ for(int i=0; i<TX_FIFO_NUM; i++) { if(s_tx_fifo[i].buffer == 0) { s_tx_fifo[i].buffer = malloc(USBDEV_TX_FIFO_MAX_SIZE); } fifo_init(&(s_tx_fifo[i])); } for(int i=0; i<RX_FIFO_NUM; i++) { if(s_rx_fifo[i].buffer == 0) { s_rx_fifo[i].buffer = malloc(USBDEV_RX_FIFO_MAX_SIZE); } fifo_init(&(s_rx_fifo[i])); }}
void usbdev_fifo_deinit(void){ for(int i=0; i<TX_FIFO_NUM; i++) { if(s_tx_fifo[i].buffer != 0) { free(s_tx_fifo[i].buffer); } fifo_deinit(&(s_tx_fifo[i])); } for(int i=0; i<RX_FIFO_NUM; i++) { if(s_rx_fifo[i].buffer != 0) { free(s_rx_fifo[i].buffer); } fifo_deinit(&(s_rx_fifo[i])); }}

uint32_t usbdev_tx_fifo_put(int i, uint8_t* buffer, uint32_t len){ return fifo_in(&(s_tx_fifo[i]),buffer,len);}
uint32_t usbdev_tx_fifo_get(int i, uint8_t* buffer, uint32_t len){ return fifo_out(&(s_tx_fifo[i]),buffer,len);}
uint32_t usbdev_rx_fifo_put(int i, uint8_t* buffer, uint32_t len){ return fifo_in(&(s_rx_fifo[i]),buffer,len);}
uint32_t usbdev_rx_fifo_get(int i, uint8_t* buffer, uint32_t len){ return fifo_out(&(s_rx_fifo[i]),buffer,len);}
uint32_t usbdev_rx_fifo_datalen(int i){ return fifo_get_len(&(s_rx_fifo[i]));}

usbdev_fifo.h

#ifndef USBDEV_FIFO_H#define USBDEV_FIFO_H
#include <stdint.h>#if defined(__cplusplus)extern "C" {#endif
void usbdev_fifo_init(void);void usbdev_fifo_deinit(void);uint32_t usbdev_tx_fifo_put(int i,uint8_t* buffer, uint32_t len);uint32_t usbdev_tx_fifo_get(int i,uint8_t* buffer, uint32_t len);uint32_t usbdev_rx_fifo_put(int i,uint8_t* buffer, uint32_t len);uint32_t usbdev_rx_fifo_get(int i,uint8_t* buffer, uint32_t len);uint32_t usbdev_rx_fifo_datalen(int i);
#if defined(__cplusplus)}#endif
#endif // USBDEV_FIFO_H

四.测试

测试代码usbdev_test.c如下

#include <stdio.h>#include <pthread.h>
#include "usbdev.h"
pthread_t s_test_thread;
#define TRANSFER_SIZE 64
static uint8_t s_tx_buffer[TRANSFER_SIZE]; /* 发送数据 */static uint8_t s_rx_buffer[TRANSFER_SIZE]; /* 接收数据 */
void delay(uint32_t ms){ const struct timespec interval= { .tv_nsec = ms*1000, .tv_sec = 0, }; pthread_delay_np(&interval);}
static void* test_thread(void *arg){ if(0 != usbdev_run()) { printf("usbdev_run err%d\r\n"); return 0; }}
int usbdev_test_run(void){ for(size_t i=0; i<sizeof(s_tx_buffer); i++) { s_tx_buffer[i] = i; } uint32_t rx_len = 0; int r = pthread_create(&s_test_thread,0,test_thread,0); if (r != 0) { printf("failed to create test thread:%d\r\n",r); return r; }
while(usbdev_state() != USBDEV_STATE_RUNING) { delay(10); }
while(1) { int len; len = usbdev_write(0, s_tx_buffer, sizeof(s_tx_buffer)); len = usbdev_read(0, s_rx_buffer, sizeof(s_rx_buffer)); if(len > 0) { rx_len += len; printf("get len:%d\r\n",len); } delay(100);
if(rx_len >= 1024) { break; } }
usbdev_stop();
printf("test done\r\n");}



usbdev_test.h如下

#ifndef USBDEV_TEST_H#define USBDEV_TEST_H
#if defined(__cplusplus)extern "C" {#endif
int usbdev_test_run(void);
#if defined(__cplusplus)}#endif
#endif // USBDEV_TEST_H

main.cpp中调用该函数即可

#include <QCoreApplication>#include "usbdev_test.h"
int main(int argc, char *argv[]){ QCoreApplication a(argc, argv); usbdev_test_run(); return a.exec();}

测试结果如下:

接收1024字节后退出

五.总结

以上基于fifo实现了底层和应用层的解耦,方便应用层调用,后面就可以基于此合并之前gui框架,实现新版本的测试工具了。